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Matthias Stoldta,d, Eriks Kupčeb, Bernd H.A. Rehmc & Matthias Görlacha,∗
aInstitut für Molekulare Biotechnologie e.V., Abt. Molekulare Biophysik/NMR-Spektroskopie, Beutenbergstr. 11,
D-07745 Jena, Germany; bVarian Limited., 28 Manor Road, Walton-on Thames, Surrey KT12 2QF, U.K.; cInstitut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Corrensstr. 3, D-48149
Münster, Germany; dInstitut für Biologische Informationsverarbeitung, Biologische Strukturforschung/NMR,
Forschungszentrum Jülich, D-52425 Jülich, Germany

Received 11 June 2003; Accepted 18 July 2003

Key words: aminoglycoside modification, antibiotic resistance, NMR resonance assignment

Biological context

Antibiotic resistance against the aminoglycoside/ami-
nocyclitol family is mostly achieved through en-
zymatic covalent modification of these compounds.
These modifications block the antibiotic’s interaction
with its target, the bacterial ribosomal aminoacyl-
tRNA site (Llano-Sotelo et al., 2002). Three classes of
modifying enzymes have been identified in all clinic-
ally relevant bacteria of both Gram-positive and Gram-
negative origin (Wright, 1999): (1) aminoglycoside-
O-phosphotransferases (APHs), (2) aminoglycoside-
O-adenyltransferases (ANTs) and (3) aminoglycoside-
N-acetyltransferases (AACs).

APHs catalyze the ATP-dependent phosphoryla-
tion reaction, where the γ-phosphate of ATP is trans-
ferred to specific aminoglycoside hydroxyl groups.
Several families of APHs have been classified with
respect to their reaction and substrate specificity.

We have initiated the structural characteriza-
tion of kanamycin-3′-O-phosphotransferase type IIa
(APH(3′)IIa, kanamycin kinase) originating from the
Klebsiella pneumoniae transposon Tn5. This enzyme
is a 29 kDa (264 aa) monomeric single-chain protein.
Here we report the sequence-specific NMR backbone
assignment of kanamycin kinase.

∗To whom correspondence should be addressed. E-mail:
mago@imb-jena.de

Methods and experiments

Kanamycin kinase was purified from a kanamy-
cin kinase accumulating Pseudomonas oleovorans
strain harbouring plasmid pBHR81 (derivative of
pBBR1MCS-2; Rehm et al., 1998; Kovach et al.,
1995). P. oleovorans was grown in M9 media at 30 ◦C.
[15N]-ammonium chloride, [13C]-sodium acetate,
[13C]-glucose, [2H, 13C]-glucose, [3,3-2H2, 13C]-2-
ketobutyrate, [3-2H, 13C]-2-ketoisovalerate and 99.9%
or 95% 2H2O were used as isotope sources for pro-
duction of protein samples with different isotope la-
belling schemes. Purification of kanamycin kinase to
over 95% purity as judged from gel electrophoresis
was achieved by ion exchange chromatography on
Q-Sepharose and subsequent size exclusion chroma-
tography on Superdex-75 columns. The NMR buffer
contained 20 mM BIS-TRIS (pH 6,5), 20 mM sodium
chloride, 60 mM potassium chloride, 10 mM dithio-
threitol, 100 µM EDTA, 5% 2H2O and 0.02% sodium
azide. The following kanamycin kinase samples of
approx. 1 mM protein concentration (5 mm NMR
tubes, 320 µl, Doty susceptibility plugs) were used
for NMR spectroscopy: [U-2H, U-15N]-, [U-2H, U-
13C, U-15N]-, [60–70%-2H, U-13C, U-15N]- and [U-
2H, U-13C, U-15N]/[Val-γ1/2-, Leu-δ1/2, Ile-δ1-1H]-
kanamycin kinase.

NMR experiments were carried out on Varian
Unity INOVA instruments operating at 750 or
900 MHz proton frequency. All spectra were re-
corded at 25 ◦C. The following spectra were used
for backbone resonance assignment: 2D 1H-15N-
TROSY-HSQC, 2D 1H-13C-ct-HSQC, 3D TROSY-
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Figure 1. 2D 1H-15N TROSY-HSQC of [U-2H, U-13C, U-15N]-
kanamycin-3′ -O-phosphotransferase type IIa (APH(3′)II, kanamy-
cin kinase) recorded at 900 MHz. Sequence specific assignments
of the cross peaks are indicated. Amino acids are designated using
single letter code.

type HNCACB, 3D TROSY-type HNCA, 3D TROSY-
type HNCO, 3D HNHA and 3D 1H-15N-TROSY-
NOESY with diagonal peak suppression (Meissner
and Sørensen, 2000; 175 ms mixing time). Spectra
were processed using Vnmr (Varian, Inc.) or NM-
RPipe (Delaglio et al., 1995) and analyzed using
XEASY (Bartels et al., 1995).

Extent of assignments and data deposition

Interpretation of the TROSY-type triple resonance
backbone assignment experiments and the 3D HNHA
spectrum lead to the sequence-specific assignment of
93% of the backbone amides (Figure 1) and 95, 94,
88 and 73% of the Cα, Cβ, C′ and Hα resonances,
respectively. In particular, the segments comprising
N58-L60, M148/E149, L241-L243 and D250-R253
could not be assigned. Evaluation of the obtained
Cα, Cβ, C′ and Hα chemical shifts by the CSI pro-
gram (Wishart and Sykes, 1994) lead to the predic-
tion of ten α-helical and five β-sheet segments longer
than three residues. Inspection of the 3D 1H-15N
TROSY-NOESY spectrum with diagonal suppression

(Meissner and Sørensen, 2000) for key long-range and
sequential amid/amid NOE correlations confirms the
occurrence of eight α-helices and a five-stranded anti-
parallel β-sheet within the N-terminal 100 residues.
The topology of the β-strands is I-II-III-V-IV. The pat-
tern of secondary structure found here is in excellent
agreement with a crystallographic structure of a homo-
logous APH(3′)IIIa enzyme (Hon et al., 1997) and of
a crystallographic structure of APH(3′)IIa published
very recently (Nurizzo et al., 2003). The availability
of both the backbone resonance assignments and the
three-dimensional structure of kanamycin kinase will
be instrumental to now analyse by NMR the inter-
action of the enzyme with a wide variety of ligands
including new inhibitors.

The backbone 1H, 13C and 15N chemical
shifts have been deposited at BioMagResBank
(www.bmrb.wisc.edu) under accession number BMRB-
5721.
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